Genetic network properties of the human cortex based on regional thickness and surface area measures
نویسندگان
چکیده
We examined network properties of genetic covariance between average cortical thickness (CT) and surface area (SA) within genetically-identified cortical parcellations that we previously derived from human cortical genetic maps using vertex-wise fuzzy clustering analysis with high spatial resolution. There were 24 hierarchical parcellations based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction; in both cases the 12 parcellations per hemisphere were largely symmetrical. We utilized three techniques-biometrical genetic modeling, cluster analysis, and graph theory-to examine genetic relationships and network properties within and between the 48 parcellation measures. Biometrical modeling indicated significant shared genetic covariance between size of several of the genetic parcellations. Cluster analysis suggested small distinct groupings of genetic covariance; networks highlighted several significant negative and positive genetic correlations between bilateral parcellations. Graph theoretical analysis suggested that small world, but not rich club, network properties may characterize the genetic relationships between these regional size measures. These findings suggest that cortical genetic parcellations exhibit short characteristic path lengths across a broad network of connections. This property may be protective against network failure. In contrast, previous research with structural data has observed strong rich club properties with tightly interconnected hub networks. Future studies of these genetic networks might provide powerful phenotypes for genetic studies of normal and pathological brain development, aging, and function.
منابع مشابه
Sexual Dimorphism in Surface Anatomical Parameters of Human Cerebral Cortex in Different Lebes in Normal and Neurodegenerative Subjects: a Stereological and Macroscopical Study
Purpose: This study sought to determine sex differences in surface anatomical parameters (thickness and surface areas) of human cerebral cortex in different lobes of the left hemisphere in normal right-handed subjects and right-handed subjects suffering from Alzheimer and Parkinson's diseases. Materials and Methods: This cross-sectional descriptive study was performed on 72 normal human brains...
متن کاملSexual Dimorphism in Surface Anatomical Parameters of Parahippocampal Cortex in Normal Subjects and Those Suffering From Alzheimer and Parkinson's Diseases - a Stereologic and Macroscopic Study
Purpose: This study was designed to determine sex differences in the surface anatomical parameters (surface area and thickness) of the left parahippocampal cortex in healthy right - handed subjects and right - handed subjects suffering from Alzheimer and Parkinson's diseases. Materials and Methods: This cross-sectional descriptive study was performed on 72 normal human brains (38 males, 34 fem...
متن کاملA comparison of heritability maps of cortical surface area and thickness and the influence of adjustment for whole brain measures: a magnetic resonance imaging twin study.
Understanding the genetic and environmental contributions to measures of brain structure such as surface area and cortical thickness is important for a better understanding of the nature of brain-behavior relationships and changes due to development or disease. Continuous spatial maps of genetic influences on these structural features can contribute to our understanding of regional patterns of ...
متن کاملDistinct genetic influences on cortical surface area and cortical thickness.
Neuroimaging studies examining the effects of aging and neuropsychiatric disorders on the cerebral cortex have largely been based on measures of cortical volume. Given that cortical volume is a product of thickness and surface area, it is plausible that measures of volume capture at least 2 distinct sets of genetic influences. The present study aims to examine the genetic relationships between ...
متن کاملP29: Changes in Thickness and Intelligence
Neuroimaging research indicates that human intellectual ability is associated to brain structure including the thickness of the cerebral cortex. Most studies show that general intelligence is positively associated with cortical thickness in areas of association cortex allocated throughout both brain hemispheres. Changes in cortical thickness over time have been related to intelligence, but whet...
متن کامل